36,437 research outputs found

    Measurement in control and discrimination of entangled pairs under self-distortion

    Full text link
    Quantum correlations and entanglement are fundamental resources for quantum information and quantum communication processes. Developments in these fields normally assume these resources stable and not susceptible of distortion. That is not always the case, Heisenberg interactions between qubits can produce distortion on entangled pairs generated for engineering purposes (e. g. for quantum computation or quantum cryptography). Experimental work shows how to produce entangled spin qubits in quantum dots and electron gases, so its identification and control are crucial for later applications. The presence of parasite magnetic fields modifies the expected properties and behavior for which the pair was intended. Quantum measurement and control help to discriminate the original state in order to correct it or, just to try of reconstruct it using some procedures which do not alter their quantum nature. Two different kinds of quantum entangled pairs driven by a Heisenberg Hamiltonian with an additional inhomogeneous magnetic field which becoming self-distorted, can be reconstructed without previous discrimination by adding an external magnetic field, with fidelity close to 1 (with respect to the original state, but without discrimination). After, each state can be more efficiently discriminated. The aim of this work is to show how combining both processes, first reconstruction without discrimination and after discrimination with adequate non-local measurements, it's possible a) improve the discrimination, and b) reprepare faithfully the original states. The complete process gives fidelities better than 0.9. In the meanwhile, some results about a class of equivalence for the required measurements were found. This property lets us select the adequate measurement in order to ease the repreparation after of discrimination, without loss of entanglement.Comment: 6 figure

    The Critical Point of Unoriented Random Surfaces with a Non-Even Potential

    Full text link
    The discrete model of the real symmetric one-matrix ensemble is analyzed with a cubic interaction. The partition function is found to satisfy a recursion relation that solves the model. The double-scaling limit of the recursion relation leads to a Miura transformation relating the contributions to the free energy coming from oriented and unoriented random surfaces. This transformation is the same kind as found with a cuartic interaction.Comment: 20p (Frontpage included

    The stellar population and the evolutionary state of HII regions and starburst galaxies

    Get PDF
    RHII and starbursts are both powered by massive stars. They are the main contributors to the heating of the ISM via radiative and mechanical energy. Techniques to derive the stellar content and the evolutionary state of RHIIs and starbursts from their ultraviolet and optical integrated light are reviewed. A prototypical RHII (NGC 604) and nuclear starburst (NGC 7714) are discussed in more detail. The results reveal the necessity of multiwavelength analyses of these objects to estimate their stellar content and their evolutionary state in a consistent way.Comment: Proceedings of the JENAM Conference (Toulouse, September 1999). To be published in New Astronomy Reviews, Editors Daniel Schaerer and Rosa Gonzalez Delgado. 12 pages, 7 figure

    Single-Step Distillation Protocol with Generalized Beam Splitters

    Full text link
    We develop a distillation protocol for multilevel qubits (qudits) using generalized beam splitters like in the proposal of Pan et al. for ordinary qubits. We find an acceleration with respect to the scheme of Bennet et al. when extended to qudits. It is also possible to distill entangled pairs of photons carrying orbital angular momenta (OAM) states that conserves the total angular momenta as those produced in recent experiments.Comment: REVTEX4 file, color figure
    • …
    corecore